Towards Scalable Data Integration under Constraints

George Konstantinidis
Information Sciences Institute
University of Southern California
Marina Del Rey, CA 90292
konstant@usc.edu
Advisor: Jose Luis Ambite

ABSTRACT

In this paper we consider the problem of answering queries using views, with or without ontological constraints, which is important for data integration, query optimization, and data warehouses. Our context is data integration, so we search for maximally-contained rewritings. We have produced a very scalable and efficient solution for its simplest form, conjunctive queries and views, and we are working towards the full relational case. When considering constraints, the problem is usually divided in two phases: (1) query expansion, which rewrites queries w.r.t. the intentional knowledge and (2) expanded query reformulation using the views. Relevant algorithms have given little attention to the second phase and have studied a limited form of view definition languages overall (namely, only GAV). By looking at the problem from a graph perspective we are able to gain a better insight and develop designs which compactly represent common patterns in the source descriptions, and (optionally) push some computation offline. This allows us to contribute significantly in both aforementioned phases individually, tailor one to each other, and moreover address them in a unified way. We intend to provide a solution that supports a variety of ontology languages, and all prevalent view definition languages (G/LAV). Towards such a general and scalable system our preliminary results for the relational case, show an experimental performance about two orders of magnitude faster than current state-of-the-art algorithms, rewriting queries using over 10000 views within seconds.

1. INTRODUCTION

In information integration, a virtual mediator integrates information from multiple heterogeneous sources by defining a global schema and then describing the contents of the sources in terms of this schema. The user poses queries to the system using the global schema and then describing the contents of the sources in terms of the source schemas. Therefore, the sources must be queried accordingly: the mediator reformulates (rewrites) the user query into another query that only uses terms from the source schemas. In the problem’s most prevalent form (widely known as answering queries using views and extensively studied in query optimization, data integration and other areas [10, 12]) the sources and the mediator are modeled by relational schemas.

Nevertheless, a significant part of industrial and academic interest has recently focused on imposing various forms of constraints on the mediator schema, that allow for intensional knowledge [5, 12, 14, 16]. In this problem, usually referred to as ontology-based data integration (OBDA), a set of constraints (written e.g., in DL-lite [5]) form an ontology that lies on top of the mediator. The user’s query addresses the ontology schema (could be written, e.g., in SPARQL) and needs to be rewritten not only in terms of the sources but taking the ontological constraints into account as well. We are focusing on the query rewriting problem in data integration both in the relational case and under richer ontological constraints.

Mappings between the sources’ schemas and the mediator schema are usually given in the form of logical formulas, which we call source descriptions, or views1. In the Global-as-View (GAV) [9] approach, each mediator relation (or predicate) is defined by a view involving source predicates. Conversely, in the Local-as-View(LAV) [13, 7] approach each source predicate is defined by a view over mediator predicates. GLAV [8] is a generalization of GAV and LAV. We intend using all different kinds of mapping and towards this goal we choose to start from the most interesting case of LAV.

In [11] we looked at the relational query rewriting problem using LAV mappings, from a graph perspective and we were able to gain better insights and design a solution which compactly represents common patterns in the mappings, and (optionally) pushes some computation offline. This together with other optimizations resulted in an experimental performance that rewrites queries using over 10000 views within seconds, and is about two orders of magnitude faster than current state-of-the-art algorithms. We are currently extending this work to cover the full relational case.

At the same time we point out that relevant OBDA approaches, have paid little attention to the integration aspect of the problem. The problem is usually divided into two phases, and relevant algorithms focus mostly on the first one, known as query expansion [5], which rewrites the original (ontological) query by taking into account the ontology inferences; it is, in essence, “compiling” the ontology in the query and expanding the latter by adding a (possibly exponential) number of queries that account for the intensional knowledge. This technique, rather than integration, is tailored for Ontology-Based Query Answering of data stored in a single database. The actual integration of sources happens in a second phase, where the aforementioned approaches call upon existing algorithms to reformulate the expanded queries, typically using GAV views. It is worth noticing that LAV query reformulation might produce an exponential number of rewritings, for each one of the expo-

1In the context of query optimization views are materialized answers of previously evaluated queries.
resent a scalable algorithm for the problem of relational query answering using LA V views. We are working to optimize it further and to extend it to cover constants, GLAV rules, interpreted predicates, minimization of output and more expressive queries as our input such as unions of conjunctive queries (UCQs) and non-recursive (nr) datalog programs.

Having a scalable algorithm for query rewriting will allow "porting" a query expansion phase on top, to support practical OBDI. Moreover efficient UCQ rewriting using views will allow rewriting entire outputs of the query expansion phase as a batch, rather than each one in isolation, optimizing our ontology-based data integration solution even more.

In parallel, the two major contributions of our relational algorithm, i.e., compact representation of common patterns and offline preprocessing can apply also for the case of query expansion. These insights will allow for a faster query expansion phase that yields a compact output which additionally is tailored for our query reformulation algorithm.

Coupling the two phases together will (1) yield a more efficient algorithm, (2) avoid redundant work by not rewriting similar or redundant ontology-expanded queries using the views multiple times, and (3) allow us to deal with the challenging case of LA V (and GLAV) mappings, reusing our insights and leveraging the benefits of our relational approach.

2. THE DATA INTEGRATION PROBLEM

Answering Relational Queries Using Views. To define the problem formally we introduce the concepts of query containment [6, 1] and query rewritings [13]. Initially, we focus on conjunctive queries; the core of every query language. Their body is a conjunction of atoms, sets of atoms, and queries in the obvious manner, such that:

- (1) \(Q \) defined over the same schema, \(Q_1 \) is contained in \(Q_2 \) (\(Q_1 \subseteq Q_2 \)), if for all databases \(D \), the result of evaluating \(Q_1 \) on \(D \), denoted \(Q_1(D) \), is contained in the result of evaluating \(Q_2 \), that is, \(Q_1(D) \subseteq Q_2(D) \).
- (2) \(Q \) is equivalent to \(Q' \), denoted \(Q_1 \equiv Q_2 \), if \(Q_1 \subseteq Q_2 \) and \(Q_2 \subseteq Q_1 \).
- (3) A rewriting of \(Q \) using \(V \) is a rewriting \(Q' \) of \(Q \) using \(V \) such that \(Q' \subseteq Q \\
\) and \(Q' \neq Q \). In order to check whether a rewriting \(Q' \) (defined over \(V \)) is contained in a query \(Q \) (defined over schema \(R \)), we need to get the rewriting's unfolding [13], i.e., unfold the atoms of \(V \) in the body of \(Q' \) with their definitions (which are over \(R \)).

In our context we employ the description logic syntax [3] which we will use as the mediator language. In this syntax, consider the following rules as a part of the mediator ontology exposed to the user:

1. Dentist \(\sqsubseteq \) Doctor,
2. Doctor \(\sqsubseteq \) TreatsPatient,
with φ (since these coverings involve trivial extensions of φ).

Coverings should adhere to one more constraint. Consider the sources defined in the example of Sect. 2 and q_2 below which asks for doctors that treat patients with chronic diseases and the clinics where they discharge those same patients from:

$$q_2(d, c) \leftarrow \text{TreatsPatient}(d, x), \text{HasChronicDisease}(x, y), \text{DischargesPatientFromClinic}(d, x, c).$$

In contrast to q of Sect. 2, this query demands that the second argument of $\text{DischargesPatientFromClinic}$ is joined with the patients that are treated for chronic diseases. This is impossible to answer, given S_1 and S_2, as S_1 does not provide the patients (i.e., patient in its definition). The property revealed here is that whenever an existential variable x in the query maps on an existential variable in a view, this view can be used for a rewriting only if it covers all predicates that mention x in the query. This property is referred to as (clause C2 in) Property 1 in MiniCon[15]. This is also the basic idea of the MiniCon algorithm: trying to map all query predicates of q_2 to all possible views, it will notice that the existential query variable x in the query maps on patient in S_1; since patient is existential it needs to go back to the query and check whether all predicates mentioning x can be covered by S_1. Here $\text{DischargesPatientFromClinic}(d, x, c)$ cannot. We notice that there is duplicate work being done in this process. First, MiniCon does this procedure for every query predicate, this means that if q_2 had multiple occurrences of TreatsPatient it would try to use S_1 multiple times and fail (although as [15] states certain repeated predicates can be ruled out of consideration). Second, MiniCon would try to do this for every possible view, even for those that contain the same pattern of S_1, as S_3 below which offers doctors and the diseases they treat on some patient, where the doctors are also dentists:

$$S_3: V3(\text{doctor, disease}) \leftarrow \text{TreatsPatient}(\text{doctor, patient}), \text{HasChronicDisease}(\text{patient, disease}), \text{Dentists}(\text{doctor})$$

S_3 cannot be used for q_2 as it violates MiniCon’s Property 1, again due to its second variable, patient, being existential and $\text{DischargesPatientFromClinic}$ not covered. Our idea is to avoid this redundant work by compactly representing all occurrences of the same view pattern. Our algorithm (called Graph-based Query Rewriting or GQR [11]) compactly represents common subexpressions in the views. Instead of considering every view subgoal, we only consider the distinct patterns that all views contain. We start by finding coverings for small atomic view patterns, that repeat themselves across views and hence compactly represent pieces of multiple views (which alternatively cover the same query part). We then incrementally combine these patterns to larger ones, progressively covering the underlying query. Consequently, we naturally come up with a “batch” of contained rewritings, right away. In our solution, we use a graph representation of queries and views presented subsequently.

3. OUR PREVIOUS WORK: GQR

Recent approaches [15, 2] in query rewriting using LAV views have focused on pruning the selection of views that will potentially form the rewriting, so as not to result in a non-contained rewriting to the query. In [11], we pushed this intuition even further and managed to develop a much more efficient and scalable solution. This section summarizes our results, and defines the foundations for our proposed approach. The reader should refer to [11], for the full details of our approach and algorithms.

We will start with some preliminaries. We introduce coverings, which are restrictions of containment mappings. Coverings map a sub-part of the query body to a sub-part of a view. Recall that a query rewriting essentially consists of multiple view sub-parts, so we can “combine” these “partial” mappings (coverings) to establish the containment mapping between the query and the rewriting. As we explain later, all relevant algorithms, look for legitimate coverings in order to select a view for participation in a rewriting.

Definition 3 (Covering): For all queries Q, for all views V, for all predicates $g_q \in \text{body}(Q)$, for all predicates $g_v \in \text{body}(V)$, for all partial homomorphisms $\varphi: \text{vars}(Q) \rightarrow \text{vars}(V)$, we say that a view predicate g_v covers a predicate g_q of Q with φ iff: (1) $\varphi(g_q) = g_v$, and (2) for all $x \in \text{vars}(g_q)$ if x is distinguished then $\varphi(x) \in \text{vars}(g_v)$ is distinguished.

The second part of Def. 3 is exactly condition (2) in the containment mapping definition, and the intuition behind it is, that whenever a part of a query needs a value, you cannot cover that part with a view that does not explicitly provide this value. Abusing definition we say that a set of predicates of V, or even V itself, covers q_2
One of the core ideas of our approach is that our preprocessing phase does not need any information from the query, as we designed it to involve only views. This preprocessing constructs (1) unique PJs for all common patterns that appear across the views, (2) their infoboxes and (3) their initial partial rewritings. Although this phase has a polynomial complexity to the number and length of the views one can create more sophisticated indices on the source PJs, at the expense of space and additional offline time. For our prototype implementation, we are creating an exponential index on the source PJs so as to be able to retrieve the relevant to the query ones very efficiently on runtime (in essence we create all different potential query PJs that could map on the source PJs at hand). As discussed in Sect. 4 we plan to elaborate on different offline indexing approaches and research on offline vs. runtime trade-offs.

After the source indexing phase, the first thing we do when a query is given to the system is to retrieve all the relevant source PJs that cover each query PJ. During this retrieval we perform some pruning on the PJs returned, based on the distinguished-existential allowed mappings, as well as the join descriptions in their infoboxes. We might, for example, prune some of the views out of a PJs infobox, in case that a pattern appears in a specific source, but the specific join descriptions in this source do not satisfy the underlying query’s join descriptions (we do this to satisfy Minicon’s Property 1 discussed in the beginning of this section). This leads to a fail-fast behavior of our algorithm.

Subsequently, we start exhaustively combining PJs forming larger ones which progressively cover a larger part of the underlying query. The order of source patterns combination (or alternatively the order of query predicates we choose to cover) is currently random. We plan to do further research on good heuristics on this order which would improve our algorithm’s performance even more. During the combination procedure pruning is done again. Moreover, even if two patterns are combinable this does not mean that all the views in their infoboxes are combinable to each other, as they need to satisfy the corresponding underlying query join descriptions, so we may again have to prune some of the infoboxes information (as well as some of the partial rewritings). As we combine source graphs (progressively covering larger parts of the query) we also combine the remaining partial conjunctive rewritings they contain into larger partial rewritings, eventually producing the maximally-contained rewritings of the query. Due to space limitations we omit the relevant algorithms (see [11]). For our running example (query q, with sources S_1, S_2, S_3) Fig. 2 gives a schematic intuition behind this procedure. As seen from the figure the resulting rewritings are: $q(d,c) \leftarrow V1(d,y), V3(d, z, c)$ and $q(d,c) \leftarrow V1(d,y), V2(d, z, c)$.

\footnote{Def. 3 translates using our graph terminology: A view PJ covers a query PJ if there is a graph homomorphism from the query graph to the view one (preserving predicates and edges), s.t. it maps distinguished query variables to distinguished view ones.}

\footnote{More details of our approach and the exact algorithms can be found in [11].}
eral, we try all combinations of PJs that cover the query. The only one source PJ covering each query predicate but, in general, we try all combinations of PJs that cover the query. The figure does not show source PJs for predicate Dentist in source S_1; this will not be retrieved as the query does not mention dentists. In the current example, PJ (a) is combined with (b), resulting in (d), and subsequently (d) combined with (c) cover the entire query. The union of the rewritings of the resulting graph (e) is our solution.

3.3 Initial Results

For evaluating our prototype approach we compared with the most efficient (to the best of our knowledge) state-of-the-art algorithm, MCDSAT [2]. We should note that MCDSAT is a satisfiability translation of MiniCon. Hence the inside advantages that we discussed against MiniCon apply to MCDSAT as well. We show our performance in Fig. 3 for two kinds of randomly generated queries/views: star and chain queries. In all cases GQR outperforms MCDSAT even by close to two orders of magnitude. Moreover, GQR runs in seconds for thousands of views, producing hundreds of rewritings. Our approach is very scalable, as it “fails” very fast (when output rewritings are not produced, the algorithm realizes that quickly). As seen from the figures the time of reformulation at runtime clearly depends more on the size of the output than that of the problem. Moreover, we save a big overhead by choosing to have an offline source preprocessing phase; Fig. 3 shows that when the number of views grows substantially, the exponential time of the preprocessing phase dominates. See [11] for details, more experiments, discussion and the experimental setting.

As discussed throughout this section our design for an incremental covering of the query is ideal for early pruning of irrelevant view patterns. Moreover, this is a “batch” pruning: due to our compact representation entire sets of irrelevant views are pruned out simultaneously. On top of that, the same compact representation of view patterns leads to a compact and very efficient view combination phase (for the relevant views). Lastly, this design together with the off-line preprocessing makes our algorithm able to scale to tens of thousands of views, where no algorithm scaled before.

4. TOWARDS SCALABLE AND GENERAL MEDIATORS

Query rewriting under relational constraints. We have some impressive results on query rewriting using LAV sources and we are extending to solve the full relational case, as follows. A first step is to increase the expressiveness of the language of conjunctive queries that we use to describe our queries and views: we plan to add constant symbols and interpreted predicates, which were absent from our approach. Constants would be represented by a third different type of node in our graphs, and constants in the query should be covered either by the same constants in the views, or by distinguished variables (so we get a hold on them and “manually” set the constant value). Interpreted predicates ($\leq, =, \neq$, etc.) are more tricky. Our feeling is that we can use them as constraints and early detect irrelevant rewritings in our incremental building. We also plan to investigate different heuristics to come up with an efficient order of combination of source patterns, or equivalently an efficient order of selecting how to cover the query predicates.

We intend to leverage our incremental covering of the query to do on-the-fly optimization on our output; we plan to recognize and delete redundant predicates or partial rewritings, early on in our PJ combination phase. Incrementally checking for containment is inherent in our algorithm, and so we hope to attack the optimization problem at little additional cost.

Currently, we have used a naive exponential indexing of the source PJs, that allows for a very efficient runtime retrieval of the relevant ones. Next, we plan to design more clever indices; we can offline index the available source PJs on a lattice capturing the generality of their variables’ distinguished/existential patterns, where a source PJ higher in the hierarchy will have more distinguished variables. To retrieve the source PJs matching a query PJ, the system will traverse the generalization lattice down from the root, until the frontier of nodes that cannot cover the query PJ. Another approach is to leverage existing relational technology for our search of relevant PJs. When faced with a query PJ we essentially ask (as seen in Fig. 1(b)) for source PJs with the same or a more general pattern (one that has distinguished variables where our query has existential ones). Let 1 stand for distinguished variables and 0 for the existential ones. We can arrange our PJs in a relational table, with each row corresponding to each existential/distinguished ($0/1$) pattern of each source. Then, it suffices to query for the source PJs that provide distinguished variables in the same position as the query PJ. Both approaches will avoid the exponential indexing and we will compare and use the one has the most efficient runtime PJ retrieval.

As already mentioned, we plan to extend our approach to GLAV rules. Also known as tuple-generating-dependencies (or tgdgs) [1], these rules look like LAV but have more than one view predicates in the head. We plan to investigate two alternatives here. The first, is to rewrite the GLAV rules using some temporary intermediate predicates, into a combination of GAV and LAV rules; then we can rewrite using the LAV mappings and unfold using the temporary GAV ones. Since the same view predicate will generally participate in multiple heads of the GLAV rules, it will possibly redundantly end up in multiple places in a single rewriting, so we again have to employ our envisioned incremental optimization technique. A parallel idea, is to use directly the entire conjunction of source predicates of the rules’ heads in our partial rewritings. This is similar as using intermediate predicates, but will allow for more fine-grained optimization. Our plan is to evaluate both aforementioned approaches and keep the best one. Note that our system will be able to work with all kinds of GLAV mappings simultaneously.

After the above extensions, and towards richer mediator languages, we want to address unions of conjunctive queries (UCQs) as the input user query. To the best of our knowledge, no system or specific algorithm addresses UCQs in a unified way. This will allows us to also support nr-datalog programs. Our graph-encoding of PJs, is perfectly fitted for capturing overlapping parts of multiple rules. Hence, we plan to exploit this design to compactly represent UCQs as inputs of our algorithm. This is especially beneficial when
considering ontological constraints, since UCQs produced by the query expansion phase are usually highly redundant [16].

Query rewriting under ontological constraints. We will consider different “interesting” ontology languages, such as DL-lite [5], various OWL2 profiles and fragments of Datalog+/- [4], all of which are sweet-spots between high expressivity, and being able to expand into first-order queries (equivalent to SQL).

We plan to use our common pattern representation idea to the query expansion phase as well. Having a compact representation of the ontology axioms will allow us to design a (1) faster expansion algorithm, that will (2) avoid redundacy in the output, and so save time for subsequent reformulation phases (both GAV and LAV). It will also (3) help us integrate the output specifically with GQR and hence take advantage of its optimizations and performance, and (4) possibly lead us to design an algorithm that does query expansion at the same time as query reformulation using the views. A first idea towards building graph patterns that “capture” the ontology axioms is rewriting the latter into logical clauses in the spirit of [14].

The aforementioned approach couples the two OBDI phases in a top-down manner, by optimizing query expansion and tailoring it to relational query reformulation using views. However, we plan to explore deeper forms of integration. We are particularly interested in being able to check for partial containment of ontological queries (in the spirit of coverings, see Def. 3), which might be easier than full containment, which requires the expansion of one of the queries. Being able to check for partial containment without expanding any queries, would mean that GQR, would be almost directly applicable in the ontological context: our coverings would be partial ontological containments from source PIs to the query PIs. Combining source PIs in a legitimate way as to maintain the containment would end up in maximally contained (w.r.t. the constraints) rewritings using the LAV sources. This approach enjoys all the benefits discussed, ranging from the use of GLAV rules, to offline preprocessing of the ontological views and from incremental optimization of our output to support for UCQs as inputs.

With our proposed approach queries would be rewritten much faster (in correspondence with our initial experiments for conjunctive queries) and systems will be much more scalable. We hope to build a mediator capable of offering languages of adjustable expressivity, ranging from relational to rich ontological constraints, and all with efficient runtime cost.

1http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/

5. REFERENCES

